Sort:
Version 1
4. July 2011.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by WHO , 04. July, 2011

Bangladesh: Water safety plan

by WHO , 04. July, 2011

Under AusAid funding, WHO supported WSP implementation in 10 urban systems in Bangladesh. This case study reports on WSP facts, and provides a description of the status of urban and rural water supply in Bangladesh.

Version 1
1. April 2011.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Gef et al., 01. April, 2011

Technologies for Climate Change Adaptation

by Gef et al., 01. April, 2011

This guidebook, released by UNEP Risoe Center, describes adaptation strategies in the categories of water conservation; storm water control and capture; resilience to water quality degradation; preparation for extreme weather events; diversification of water supply; and mitigation. It has been made widely available and will help both developed and developing countries understand means of increasing resilience to the uncertain effects of future climate change. The Water Institute at UNC provided technical and methodological expertise.

Version 1
20. March 2011.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by World Health Organization, 07. March, 2011

Water safety in buildings

by World Health Organization, 07. March, 2011

Provides guidance for those responsible for managing water supply systems in buildings on applying the WSP approach to improve risk management and ensure water safety is maintained within the building.

This document provides guidance for managing water supplies in buildings where people may drink water; use water for food preparation; wash, shower, swim or use water for other recreational activities; or be exposed to aerosols produced by water-using devices, such as cooling towers. These uses occur in a variety of buildings, such as hospitals, schools, child and aged care, medical and dental facilities, hotels, apartment blocks, sport centres, commercial buildings and transport terminals.

Version 1
1. February 2011.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Frank Greaves and Claire Simmons , 01. February, 2011

Water Safety Plans for communities: guidance for adoption of water safety plans at community level

by Frank Greaves and Claire Simmons , 01. February, 2011

Numerous publications now exist on the formation and use of WSPs, but most of these focus on largerscale projects run by private or public utilities, commercial enterprises and international NGOs. Tearfund’s particular interest is in how WSPs can be understood and established by user communities which are faced with self-managing a water supply project to gain sustainable access to safe water quality. The guide is written chiefly for the use of a facilitator or facilitating body (eg the hygiene promoters or community mobilisers of a DMT or partner staff) to use in training community members, and in particular,the water project accountability group (eg Water Users Committee) of the community.

Version 1
1. February 2011.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by CDC, 01. February, 2011

A Conceptual Framework to Evaluate the Impacts of Water Safety Plans

by CDC, 01. February, 2011

This paper outlines a conceptual framework for conducting this type of overall evaluation of the impacts of a WSP. Drawing examples from existing WSPs in various regions, the framework also illustrates the types of intermediate outcomes that can be expected during WSP implementation. This conceptual framework, which requires some familiarity with WSPs, is designed to be one of a set of tools to guide the implementation and evaluation of Water Safety Plans, along with the WHO guidelines (WHO, 2006), the Water Safety Plan Manual (Bartram et al, 2009) and other tools and resources developed for national or regional use1

Version 1
2. January 2011.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Engeeners Without Borders Australia , 02. January, 2011

SNAKES & LADDERS – Water Safety Plan version in Nepal

by Engeeners Without Borders Australia , 02. January, 2011

‘WSP Snakes & Ladders’ was developed according to the hazards identified and hazard control measures developed for this particular community in Nepal. The game could easily be adapted to any drinking water system or community, ensuring that the hazards and control measures are locally appropriate.

Version 2
1. November 2010.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Federica Gerber et al., 01. November, 2010

An Economic Assessment of Drinking Water Safety PlanningKoror-Airai, Palau

by Federica Gerber et al., 01. November, 2010

This document describes a preliminary economic assessment of the Koror-Airai, Palau drinking water safety plan. The information generated is to be used to inform stakeholders in Palau of the rewards from supporting the DWSP approach, demonstrating the potential benefits of investing in the Plan.

Version 1
24. September 2010.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Talem Hasan and Federica Gerber , 24. September, 2010

The Economics of Drinking Water Safety Planning: An Advocacy Tool

by Talem Hasan and Federica Gerber , 24. September, 2010

This paper describes an economic cost-benefit analysis of the Koror-Airai drinking water safety plan from Palau to demonstrate the value to society of the drinking water safety planning approach in the long term. The cost-benefit analysis for implementing the Koror-Airai drinking water safety plan showed that a return of US$ 6.00 was expected on every US$ 1.00 invested towards implementing the plan. The case study provides an effective advocacy tool for the promotion of drinking water safety planning both in the Pacific region and globally.

Version 2
24. September 2010.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Talem Hasan and Federica Gerber , 24. September, 2010

Economics of WSP: an advocacy tool

by Talem Hasan and Federica Gerber , 24. September, 2010

This paper describes an economic cost-benefit analysis of the Koror-Airai drinking water safety plan from Palau to demonstrate the value to society of the drinking water safety planning approach in the long term. The cost-benefit analysis for implementing the Koror-Airai drinking water safety plan showed that a return of US$ 6.00 was expected on every US$ 1.00 invested towards implementing the plan. The case study provides an effective advocacy tool for the promotion of drinking water safety planning both in the Pacific region and globally.

Version 2
8. June 2010.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Asian Development Bank et al., 08. June, 2010

WOPs Manila and Danang on Water quality improvement

by Asian Development Bank et al., 08. June, 2010

Da Nang Water Supply Company (DAWACO) and Manila Water Company, Inc. (Manila Water) engaged in a water operator partnership (WOP) to help DAWACO meet World Health Organization (WHO) standards for water quality in their pipe network. Through the partnership, 20,000 residents received improved access to water, and DAWACO increased staff capacity to scale up similar improvements in the remainder of DAWACO’s service area.

Version 1
22. March 2010.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by AusAID and SOPAC , 22. March, 2010

Drinking Water Safety Planning: A practical guide for the Pacific Island countries

by AusAID and SOPAC , 22. March, 2010

This document is a guideline for development and implementation of Water Safety Plans approach in the Pacific. It is primarily for water supply managers, engineers and operators and introduces a more proactive way of managing drinking water supplies through a comprehensive risk assessment and risk management approach. Implementing DWSPs helps achieve a more effective drinking water supply system.

Version 1
20. March 2010.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by WHO, 01. March, 2010

Water safety plans: managing drinking-water quality for public health

by WHO, 01. March, 2010

A brief note on the rationale for the WSP approach, the potential benefits for various stakeholder groups, and the value of incorporating WSPs into policies and regulations.

Version 2
1. November 2009.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by USEPA et al., 01. November, 2009

Water Quality application of composite correction in India

by USEPA et al., 01. November, 2009

This case study describes the study of the Composite Correction Programme (CCP) in three different cities in India to prepare for the implementation of Water Safety Plans. CCP is a water treatment plant optimization program that improves water treatment operation with limited capital investment by optimizing particle removal from water treatment plants.

Version 2
28. September 2009.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by MWH , 28. September, 2009

Consumer Acceptability Data Case Study: Yarra Valley Water, Australia

by MWH , 28. September, 2009

This case study provides an example of a water supplier in Australia which has undertaken research to understand consumer expectations in relation to water quality. This includes the use of surveys and focus groups. It also describes the approach the company takes to handling, recording, and reviewing complaints.

Version 2
28. September 2009.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by MWH , 28. September, 2009

Consumer Acceptability Data Case Study: Lyonnaise des Eaux, France

by MWH , 28. September, 2009

This case study provides an example of where a water supplier in France has established a system to collect consumer acceptability data via a group of volunteers. It provides one particular approach to the collection of opinions on the taste and odour of water supplied.

Version 2
28. September 2009.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by MWH , 28. September, 2009

Consumer Acceptability Case Study: Dunedin City Council, New Zealand

by MWH , 28. September, 2009

This case study provides an example of where a water supplier in New Zealand operates a Service Centre to respond quickly to customer complaints and assesses levels of consumer acceptability through analysis of complaint data and questionnaires.

Version 1
1. September 2009.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Department of health Victoria et al., 2011

Case Study on Water Safety Plan Implementation and Lessons Learned: WSP auditing Victoria Australia

by Department of health Victoria et al., 2011

This case study describes the implementation of WSP and lessons learned in Victoria Australia. This case study has a specific focus on auditing WSPS.

Version 1
3. August 2009.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Mathias H. Kleppen , 03. August, 2009

Pacific Drinking Water Safety Planning Lessons Learned

by Mathias H. Kleppen , 03. August, 2009

This case study provides the progress and lessons learned form the implementation of the Pacific Drinking Water Safety Plan programme.

Version 1
1. August 2009.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Peter Thompson and Sameera Majam , 01. August, 2009

The development of a generic Water Safety Plan for small community water supply

by Peter Thompson and Sameera Majam , 01. August, 2009

This case study describes the development of Water Safety Plans in small community water supplies in South Africa. It describes the previous assessment methods as well as the eleven steps taken to develop and implement the WSP.

Version 1
1. August 2009.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Bob Breach , 01. August, 2009

Unauthorised access to the network

by Bob Breach , 01. August, 2009

It is the experience of many water suppliers that illegal or unauthorised access to the distribution network can occur for a variety of reasons. This poses a number of water quality risks and can also create wider problems related to loss of revenue. This document briefly summarises the water quality risks associated with unauthorised access and how they can be mitigated.

Version 2
1. August 2009.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Bob Breach , 01. August, 2009

Treated water storage

by Bob Breach , 01. August, 2009

This document summarises the type of risks that might occur within treated water storages and how to control them.

Version 1
1. August 2009.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Peter Thompson and Sameera Majam , 01. August, 2009

South Africa The development of a generic water safety plan for small community water supply

by Peter Thompson and Sameera Majam , 01. August, 2009

This document describes development of a Water Safety Plan with a background focus on Africa.

Version 2
1. August 2009.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Bob Breach , 01. August, 2009

Microbial regrowth and disinfection in the network

by Bob Breach , 01. August, 2009

This document summarizes the management of risk from microbial regrowth in distribution systems through optimized chlorine disinfection. Considerations is also given to the potential for formation of disinfection by-products. Strategies for controlling these risks are presented.

Version 2
1. August 2009.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Bob Breach , 01. August, 2009

Intermittent supplies and water quality

by Bob Breach , 01. August, 2009

This document highlights water quality risks from supplies that do not continuously supply water and outlines examples of measure to control these risks.

Version 1
1. August 2009.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Bob Breach , 01. December, 2008

Emergency management plan checklist

by Bob Breach , 01. December, 2008

Preparation of a well documented and up to date emergency management plan is an essential component of an effective incident response framework. The structure and content can only be determined by each water supply taking account of a wide range of different local factors. However this document provides a checklist of those items which need to be considered.

Version 2
1. August 2009.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Bob Breach , 01. August, 2009

Corrosion and mains sediments

by Bob Breach , 01. August, 2009

This document summarises the drinking-water quality risks associated with corrosion and sediment accumulation within distribution networks and describes ways that the risks can be mitigated.

Version 1
1. August 2009.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by MWH , 01. August, 2009

Conducting consumer surveys of water acceptability

by MWH , 01. August, 2009

Communication with consumers is a key part of assessing and promoting the acceptability of drinking water supplies with consumers. The evaluation of consumer acceptability and knowledge of consumer complaints are important components of assessing the overall effectiveness of a WSP and an essential part of the verification of a WSP. This document summarises the main approaches to the collection and analysis of consumer acceptability through surveys.

Version 2
1. August 2009.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Bob Breach , 01. August, 2009

Backsiphonage into the distribution network

by Bob Breach , 01. August, 2009

This document sets out information which allows water suppliers and others to work together to minimise the risk of backsiophange (that is, the reverse flow condition created by a difference in water pressures that causes water and associated contaminants to flow back into drinking-water distribution pipes).

Version 1
1. January 2009.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Lans Rosen and Andreas Kindhe , 2009

Comprehensive Framework for integrated risk management in WSP

by Lans Rosen and Andreas Kindhe , 2009

Risk assessment and risk prioritisation are critical elements of a Water Safety Plan. However the process can be complex, require considerable resources and take a long time. Therefore before establishing a risk management system it is important to be clear on the most cost effective approach to meet local priorities and needs. This document provides an overview of the TECHNEAU Generic Framework, which is a comprehensive structure for integrated risk management from catchment to consumer in Water Safety Plans, considering both water quality and water quantity

Version 1
1. December 2008.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Bob Breach , 01. December, 2008

Rapid gravity filters-water quality benefits and risks

by Bob Breach , 01. December, 2008

Rapid gravity filters are used extensively in many waterworks across the world where they provide a critical part of the water purification process. This document summarises the basic functions and operation of such filters and identifies possible risks to water quality which need to be assessed and managed as part of a treatment water safety plan.

Version 1
1. November 2008.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Bob Breach , 01. November, 2008

WSP summary of benefits and costs

by Bob Breach , 01. November, 2008

Before implementation of a WSP it is important to clearly identify the expected benefits and the associated costs both of which could be significant. This will help secure the support of senior management, ensure that sufficient resources are made available and allow much more targeted and efficient implementation. The actual benefits and costs of WSP implementation will vary considerably from utility to utility. This document sets out a summary of the issues that need to be taken into account.

Version 2
28. October 2008.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by WSP, 28. October, 2008

Johannesburg, South Africa Case Study

by WSP, 28. October, 2008

This document describes the learnings from water safety plan development and implementation by Rand Water in South Africa, providing valuable field experiences from the process.

Version 1
1. October 2008.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by WHO - Western Pacific Region , 01. October, 2008

Training workbook on Water Safety Planning Urban systems

by WHO - Western Pacific Region , 01. October, 2008

The objective of this workbook is to serve as a guide to facilitate WSP development for an organised water supply that is managed by a water utility or similar entity. WSPs can be tailored differently for each specific water supply system. This workbook is generic and is not specific to any particular country. It is anticipated that trainers in each country would develop their own WSP training material which would be linked directly to country drinking water standards and implementing guidelines as well as bring written in other appropriate languages.

Version 1
2. March 2008.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by US Department of Health and Human Services et al., 02. March, 2008

A guide to conducting household surveys for Water Safety Plans

by US Department of Health and Human Services et al., 02. March, 2008

The aim of this manual is to provide guidance on conducting a household survey as part of a Water Safety Plan for organized piped water supply systems in resource-limited settings. A household survey can help researchers to understand the fate of water from the time it reaches the home to the point of consumption. This survey contributes to Module 2 (System Assessment) of the Water Safety Plan, upon which the subsequent steps of hazard identification, consideration of control measures, and development of corrective actions, monitoring, and verification plans are based. Thus, the survey provides valuable information for the WSP team as the team goes through the process of system evaluation and implementation of changes resulting from the Water Safety Plan. Specific examples intended to guide the planner in designing the survey are provided in the appendices. A summary checklist for survey planning and completion is provided as Appendix A.

Version 1
2. December 2007.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by U.S. Department of Health and Human Services Centers for Disease Control and Prevention National Center for Environmental Health Agency for Toxic Substances and Disease Registry Division of Emergency and Environmental Health Services , 02. December, 2007

Household Water Use and Health Survey for the WSP Linden Guyana

by U.S. Department of Health and Human Services Centers for Disease Control and Prevention National Center for Environmental Health Agency for Toxic Substances and Disease Registry Division of Emergency and Environmental Health Services , 02. December, 2007

This Household Water Use and Health Survey was therefore conducted as part of the Water Safety Plan for Linden, Guyana in order to understand the fate of water from the time it reaches the home to the point of consumption. It illustrates the sampling, the household visits, the water testing, the data management and discusses the results from the survey.

Version 2
2. December 2007.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by WSP, 02. December, 2007

Household water use and health assessment Spanish Town Jamaica

by WSP, 02. December, 2007

This case study describes a randomized household survey and the collection and testing of drinking water samples from sources (household tap, public standpipe, rainwater, etc.) and household storage containers in Spanish Town Jamaica, with linkages to water safety planning.

Version 2
1. October 2007.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by WSP, 01. October, 2007

Spanish Town, Jamaica Case Study

by WSP, 01. October, 2007

Presents the WSP for Spanish Town, Jamaica, which may provide an example approach for WSP development for WSP community at an early stage of WSP development

Version 1
1. September 2007.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Enviromental and Engineering Managers Ltd. , 01. September, 2007

Lessons learned from development WSP in Jamaica

by Enviromental and Engineering Managers Ltd. , 01. September, 2007

This document is a technical paper following the "Spanish town Jamaica Case study". It describes the lessons learned from the development of the Water Safety Plan for the Spanish town water supply system in Jamaica.

Version 1
1. September 2007.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Therrence Thompson et al., 01. September, 2007

Chemical safety of drinking-water: Assessing priorities for risk management

by Therrence Thompson et al., 01. September, 2007

This text provides guidance on the chemical safety of drinking-water. Chemical contaminants of drinking-water are often considered a lower priority than microbial contaminants, because adverse health effects from chemical contaminants are generally associated with long-term exposures, whereas the effects from microbial contaminants are usually immediate. Nonetheless, chemicals in water supplies can cause very serious problems. The objective of this text is to help users at national or local level to establish which chemicals in a particular setting should be given priority in developing strategies for risk management and monitoring of chemicals in drinking-water. The document will be useful to public health authorities, those responsible for setting standards and for surveillance of drinking-water quality, and to water supply agencies responsible for water quality management. In particular, this publication will be applicable in settings where information on actual drinking-water quality is limited, which is the case in many developing countries and in rural areas of some developed countries.

Version 2
1. September 2006.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by World Plumbing Council and WHO , 01. September, 2006

Health aspects of plumbing

by World Plumbing Council and WHO , 01. September, 2006

This text describes the processes involved in the design, installation and maintenance of effective plumbing systems. It also examines the microbiological, chemical, physical and financial risks associated with plumbing and emphasizes the importance of measures to conserve supplies of safe drinking-water. It is aimed at administrators and plumbers working in areas that are served by a mains drinking-water supply or sewerage system, or are about to install a mains drinking-water supply or sewerage system.