Sort:
Version 1
4. December 2017.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by World Health Organization (Regional Office for South-East Asia), 17. July, 2017

Principles and Practices of Drinking-water Chlorination: A guide to strengthening chlorination practices in small- to medium-sized water supplies

by World Health Organization (Regional Office for South-East Asia), 17. July, 2017

Practical guidance and training materials for small- and medium-sized water supplies, and for those providing training and support to these suppliers, on strengthening chlorination practices – a common improvement need identified through the WSP process in the South-East Asia and Western Pacific regions. Training materials include a facilitator’s guide and PowerPoint slides, and basic standard operating procedures and calculation sheets for effective and safe chlorination. The materials are based on training programmes delivered in the regions.

Version 1
6. February 2019.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Moeller et al., 2009

Developing Water Safety Plans Involving Schools – Introducing “Water Safety Plans” for small-scale water supply systems – Manual for teachers and pupils

by Moeller et al., 2009

The World Health Organisation (WHO) initiated the Water Safety Plans (WSP), which is to be considered as a part of the WHO or other guidelines or directives on drinking water quality. The WSP asks for an identification of risks, which could affect water safety and human health in every stage of the water supply. It is also necessary, however, to identify measures, which minimise and manage the risks have to be identified. A WSP should be discussed, developed and implemented with involvement of all stakeholders. The paper give an introduction into this important issue.

Version 1
13. April 2018.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Water Supplies Department et al., 02. April, 2018

Water safety plan template for residential care homes for the elderly

by Water Supplies Department et al., 02. April, 2018

This template is prepared based on recommendations of the World Health Organization (WHO)  to assist the owner or the house management staff of a residential care home for the elderly with an independent internal plumbing system to develop and implement a Water Safety Plan (WSP) to enhance water safety.

Version 1
6. December 2018.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Rickert B et al., 30. November, 2018

Climate Resilient Water Safety Plans (CR-WSP). Compilation of potential hazardous events and their causes

by Rickert B et al., 30. November, 2018

Climate-resilient water safety plans (CR-WSPs) extend the traditional WSP framework by also identifying and managing climate-related impacts on water supply systems to strengthen resilience. This compilation of information on hazardous events and their causes, including those related to climate impacts, aims to support practitioners, particularly water suppliers, health agencies and consultants, in implementing CR-WSPs. It is not intended to be an exhaustive list, and may need to be adapted for application in the local context.

Version 1
11. May 2016.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by WHO/IWA, 2009

Руководство по разработке и реализации плана обеспечения безопасности воды

by WHO/IWA, 2009

В 2004 г. в опубликованном ВОЗ "Руководстве по обеспечению качества питьевой воды" поставщикам было рекомендовано разработать и осуществить планы обеспечения безопасности воды, чтобы можно было систематически оценивать риски и управлять ими. С того времени правительства и регулирующие органы, поставщики воды и практические работники все шире принимают на вооружение этот подход, однако ими была высказана просьба о дополнительных методических руководствах.

Данное руководство по разработке и реализации плана обеспечения безопасности воды является ответом на эту просьбу. В нем понятным языком описывается, как практически нужно разрабатывать и реализовывать такой план. В 11 учебных модулях даются пошаговые рекомендации, причем каждый модуль представляет собой один ключевой шаг в процессе разработки и реализации плана обеспечения безопасности воды.

Version 1
20. October 2020.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Rory Moses McKeown,

Lessons learned from practical CR WSP implementation and auditing in Africa and Asia.

by Rory Moses McKeown,

Water, sanitation and hygiene (WASH) have a significant impact on health and, of particular concern as described in the recent Intergovernmental Panel on Climate Change Special Report on Extreme Events, are the risks of more frequent and intense extreme weather events such as floods, cyclones and droughts, alongside increasing temperatures. Such extremes pose particular challenges to the capacity of WASH programmes to protect health, and there is accumulating evidence that climate change is worsening these risks.

A national programme of water safety plan (WSP) auditing was undertaken in 2018/19 with a particular focus on climate resilience, to learn lessons from the pilot WSPs and adapt the programme in advance of future scale-up.

Version 1
20. March 2013.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by WHO et al., 04. March, 2013

Water safety plan quality assurance tool

by WHO et al., 04. March, 2013

This tool is designed to guide organized drinking-water supplies through a WSP self-assessment to determine the WSP’s completeness and the effectiveness of its implementation. It aims to support the development, implementation and assessment of WSPs by systematically highlighting the areas where progress is being made and opportunities for improvement.

Version 1
12. February 2020.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Harold van den Berg ; Bettina Rickert ; Seada Ibrahim ; Kasa Bekure ; Hailu Gichile ; Seble Girma ; Altaseb Azezew ; Tadesse Zegeye Belayneh ; Solomon Tadesse ; Zeleke Teferi Firehiwot Abera ; Samson Girma ; Tesfaye Legesse ; Daniel Truneh ; Gretta Lynch ; Ingmar Janse ; Ana Maria de Roda Husman, 31. October, 2019

Linking water quality monitoring and climate-resilient water safety planning in two urban drinking water utilities in Ethiopia

by Harold van den Berg ; Bettina Rickert ; Seada Ibrahim ; Kasa Bekure ; Hailu Gichile ; Seble Girma ; Altaseb Azezew ; Tadesse Zegeye Belayneh ; Solomon Tadesse ; Zeleke Teferi Firehiwot Abera ; Samson Girma ; Tesfaye Legesse ; Daniel Truneh ; Gretta Lynch ; Ingmar Janse ; Ana Maria de Roda Husman, 31. October, 2019

Unsafe drinking water is a recognized health threat in Ethiopia, and climate change, rapid population growth, urbanization and agricultural practices put intense pressure on availability and quality of water. Climate change-related health problems due to floods and waterborne diseases are increasing. With increasing insight into impacts of climate change and urbanization on water availability and quality and of required adaptations, a shift towards climate-resilient water safety planning was introduced into an Ethiopian strategy and guidance document to guarantee safe drinking water. Climate-resilient water safety planning was implemented in the urban water supplies of Addis Ababa and Adama, providing drinking water to 5 million and 500,000 people, respectively. Based on the risks identified with climate-resilient water safety planning, water quality monitoring can be optimized by prioritizing parameters and events which pose a higher risk for contaminating the drinking water. Water quality monitoring was improved at both drinking water utilities and at the Public Health Institute to provide relevant data used as input for climate-resilient water safety planning. By continuously linking water quality monitoring and climate-resilient water safety planning, utilization of information was optimized, and both approaches benefit from linking these activities.

Version 1
2. November 2016.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by J.F. Loret et al., 01. October, 2016

Assessing the costs and benefits of Water Safety Plans

by J.F. Loret et al., 01. October, 2016

A survey was conducted to assess the costs and benefits of the WSPs developed at 197 production units operated by the SUEZ Company and serving a total of 10.6 million consumers in France, Spain, Cuba, Morocco and Macao. The results demonstrate benefits in terms of confidence of clients and health agencies. The main benefits however consist of a better control of hazards, especially new hazards that were previously overlooked, and of the treatments steps which are deemed as the most important for water safety. As the progress achieved is essentially linked with unregulated contaminants, improvements in compliance rate were rarely observed after implementation of WSPs. It is supposed that better control of these hazards, together with improved process control, result in improved safety for the consumers.

Version 1
28. February 2017.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Ministry of Water Irrigation and Energy Federal Democratic Republic of Ethiopia, 01. July, 2015

CLIMATE RESILIENT WATER SAFETY PLAN IMPLEMENTATION – Guidelines for Urban Utility Managed Drinking Water Supplies

by Ministry of Water Irrigation and Energy Federal Democratic Republic of Ethiopia, 01. July, 2015

The purpose of these Ethiopian guidelines is to provide step-by-step guidance to the operators and managers of the large, medium and small urban water supplies with conventional water treatment systems on how to develop, implement, monitor, and review the water safety plans aimed at protecting human health. Furthermore, it serves as practical tool in identifying and addressing priority risks to the water quality and quantity, reliability and sustainability of the water supply system  including risks related to current and future impacts of climate changes by taking into consideration available resources and capacities of the water supply system.

Version 1
30. June 2017.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Hallvard Ødegaard et al., 30. June, 2014

Microbial barrier analysis (MBA) – a guideline

by Hallvard Ødegaard et al., 30. June, 2014

In order to safeguard the public against waterborne diseases, water utilities must secure that multiple, microbial barriers are provided for in their drinking water systems. In most water utilities disinfection of the water represents an important barrier, but microbial barriers may also be achieved by other actions, for example in the catchment area.

Based on experiences from Norway, Sweden and Finland, this guideline is a helpful tool for implementing Water Safety Plans. The guideline explains the "barrier concept" and assist water utilities as well as their their consultants in determining what actions to take to ensure that the microbial barriers in their systems are sufficient – and that the water is safe to drink.

Version 1
8. April 2021.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by UNICEF Pacific, 08. March, 2018

Pacific WASH Resilience Guidelines & Tools

by UNICEF Pacific, 08. March, 2018

These guidelines and training materials have been produced by UNICEF Pacific and encompass a number of tools to expand and strengthen the work of governments and other partners to improve water, sanitation and hygiene services, whilst building resilience for communities in the Pacific. The guidance collates current approaches and previous guidance on WASH and resilience in one location, covering theory, guidance and practical tools. By addressing disaster risk reduction and climate change adaptation in a comprehensive approach across the disaster and climate risk continuum, it serves as a contribution to the Framework for Resilient Development in the Pacific.

 

Version 1
8. August 2017.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by EPA Ireland, 08. February, 2011

Developing drinking water safety plans

by EPA Ireland, 08. February, 2011

This document provides guidance to water suppliers on the steps involved in developing a water safety plan and an outline of what it should contain in the Irish context. It contains guidance and useful templates on hazard identification, risk assessment and the preparation of action plans for the hazards identified.

Version 0
24. May 2018.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Karen E. Setty et al., 03. April, 2018

Time series study of weather, water quality, and acute gastroenteritis at Water Safety Plan implementation sites in France and Spain

by Karen E. Setty et al., 03. April, 2018

Water Safety Plans (WSPs), recommended by the World Health Organization since 2004, can help drinking water suppliers to proactively identify potential risks and implement preventive barriers that improve safety. Few studies have investigated long-term impacts of WSPs, such as changes in drinking water quality or public health; however, some evidence from high-income countries associates WSP implementation with a reduction in diarrheal
disease. To validate the previously observed linkages between WSPs and health outcomes, this time series
study examined site-specific relationships between water-related exposures and acute gastroenteritis rates at three locations in France and Spain, including the role of WSP status. Relationships between control or exposure variables and health outcomes were tested using Poisson regression within generalized additive models. Controls included suspected temporal trends in disease reporting. Exposures included temperature, precipitation, raw water quality, and finished water quality (e.g., turbidity, free chlorine). In France, daily acute gastroenteritis cases were tracked using prescription reimbursements; Spanish data aggregated monthly acute gastroenteritis hospital visits. The models identified several significant relationships between indicators of exposure and acute gastroenteritis. Lag times of 6–9 days (including transit time) were most relevant for hydrological indicators (related to precipitation, runoff, and flow) at the two French sites, indicative of viral pathogens. Flush events (defined as surface runoff after a two-week antecedent dry period) linked to nonpoint source pollution were associated with a 10% increase in acute gastroenteritis rates at one location supplied by surface water. Acute gastroenteritis rates were positively associated with elevated turbidity average or maximum values in finished water at locations supplied by both surface and groundwater, by about 4% per 1-NTU increase in the two-week moving average of daily maxima or about 10% per 0.1 NTU increase in the prior month’s average value. In some
cases, risk appeared to be mitigated by WSP-related treatment interventions. Our results suggest drinking water exposure is associated with some potentially preventable gastrointestinal illness risk in high-income regions.

Version 1
13. December 2022.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by WHO Regional Office for Europe, 14. October, 2022

A field guide to improving small drinking-water supplies: water safety planning for rural communities

by WHO Regional Office for Europe, 14. October, 2022

The WHO Guidelines for drinking-water quality recommend the water safety plan (‎WSP)‎ approach as the most effective way of ensuring continuous provision of safe drinking-water.

The challenges related to drinking-water supply in rural areas and small towns are of notable concern globally, but the WSP approach has been proven to work effectively in small-scale water supplies. It clearly emphasizes the importance of preventing waterborne disease, and supports communities in dealing with the everyday challenges of maintaining a reliable and safe water supply.

This second, updated edition of WHO’s Water safety plan: a field guide to improving drinking-water safety in small communities provides a step-by-step introduction to the WSP approach and includes a range of ready-to-use templates to assist those involved in rural water supply with developing and implementing their own WSPs.

Version 1
21. April 2016.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by WHO, 2010

Think big, start small, scale-up: a road map to support country level implementation of water safety plans – ENGLISH

by WHO, 2010

This document provides a 'road map' to support country-level implementation of WSPs. It provides guidance for country planners on how to initiate and carry out WSP implementation.  The document outlines a series of steps which may guide how WSP implementation and scale-up of WSPs may be approached at a national level.

Version 1
2. November 2022.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by WHO SEARO, 02. November, 2022

Establishing a National WSP Regulatory Audit Scheme – Guidance Package

by WHO SEARO, 02. November, 2022

This package of materials is intended to support countries in developing (or strengthening) national schemes for regulatory auditing of water safety plans. Topics addressed include audit mandates and drivers, standardized audit criteria, auditor qualification and selection processes, financing and other mechanisms for audit functionality and sustainability. The materials are intended to facilitate a stakeholder workshop to discuss the ‘key factors and principles’ for establishing a successful and sustainable audit programme, the output of which is a detailed action plan for the development (or advancement) of a context-appropriate national audit scheme.

Version 1
10. June 2019.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Bettina Rickert et al., 13. May, 2019

Including aspects of climate change into water safety planning: Literature review of global experience and case studies from Ethiopian urban supplies

by Bettina Rickert et al., 13. May, 2019

In recent years, the water safety plan approach has been extended towards climate-resilient water safety planning. This happened in response to increasing insight into impacts of climate on drinking-water and required adaptation to anticipated climate change. Literature was reviewed for published guidance and case examples, documenting how to consider climate in water safety planning to support future uptake. Climate-resilient water safety plans were piloted within a project in the water supplies of Addis Ababa and Adama, Ethiopia.

Case examples have been published in four of six WHO regions with a focus on urban supplies. Integration of climate aspects focused mostly on the steps of establishing the team, system description, hazard analysis and risk assessment, improvement planning and development of management procedures. While the traditional framework focuses on drinking-water quality, considering climate change augments aspects of water quantity. Therefore, other factors affecting water quantity such as population development and demand of other sectors need to be considered as well. Local climate information and tools should be employed as a significant success factor for future uptake. Such information should be incorporated as it becomes available, and may – depending on the setting – be incrementally integrated into existing water safety plans or used to develop new ones.

Version 1
9. February 2023.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by WHO et al., 23. January, 2023

WSP Manual supplementary tool: Module 8 – general checklist for emergency preparedness

by WHO et al., 23. January, 2023

This tool is intended to support the practical application of the guidance presented in the Water safety plan manual: step-by-step risk management for drinking-water suppliers, second edition (WHO & IWA, 2023).  Refer to Module 8 in the manual for detailed guidance.

To support preparedness for emergency responses and unforeseen events in accordance with Module 8, use this checklist to consider what needs to be in place in the local context.

Version 1
23. January 2023.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by WHO et al., 23. January, 2023

WSP Manual: Module 2 supplementary tool – system description checklist

by WHO et al., 23. January, 2023

This tool is intended to support the practical application of the guidance presented in the Water safety plan manual: step-by-step risk management for drinking-water suppliers, second edition (WHO & IWA, 2023). Refer to Module 2 in the manual for detailed guidance.

The checklist below supports water safety plan (WSP) teams with describing the water supply (Module 2). It includes key information to consider and summarize when describing each stage of the water supply, including:

  • general system information (including equity- and climate-related aspects);
  • source (including surface water and groundwater aspects, and the catchment);
  • treatment;
  • distribution and storage;
  • user practices (including buildings);
  • water safety aspects (e.g. national drinking-water quality regulations and standards, historical water quality data, customer notifications and complaints); and
  • known or potential problems in the system.
Version 1
2. May 2018.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Giuliana Ferrero et al., 23. February, 2018

Experiential Learning through Role-Playing: Enhancing Stakeholder Collaboration in Water Safety Plans

by Giuliana Ferrero et al., 23. February, 2018

Improved water safety management, as addressed by the Sustainable Development Goals, can be aided by Water Safety Planning, a risk-assessment and risk-management approach introduced
by the World Health Organization and implemented to date in 93 countries around the globe. Yet, this approach still encounters some challenges in practice, including that of securing collaboration among the broad range of stakeholders involved. This paper presents a role-playing game designed to foster stakeholder collaboration in Water Safety Plans (WSP). In this role-play, participants take on different stakeholders’ roles during a collective (team-based) decision-making process to improve water supply safety in a fictive town. The game is the result of a transdisciplinary initiative aimed at integrating knowledge across technical and governance aspects of WSPs into an active learning experience for water sector actors from diverse backgrounds. It exposes participants to the four phases of Kolb’s experiential learning cycle: concrete experience, reflective observation, conceptualization and active experimentation. This paper discusses potential impacts of the WSP role-play, including skills and knowledge development among participants, which can support cross-sectoral integration and dealing with complexity in decision-making. These are capacity assets strongly needed to address water safety management challenges in a sustainable way.

Version 1
1. November 2011.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by World Health Organization et al., 01. November, 2011

Philippines: Water safety plan

by World Health Organization et al., 01. November, 2011

Under AusAid funding, WHO supported WSP implementation in the Philippines. This case study reports on key WSP facts, and describes the status of water supply in the Philippines

Version 1
18. June 2020.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Dennis Schmiege et al., 02. May, 2020

Comparing the German enabling environment for nationwide Water Safety Plan implementation with international experiences: Are we still thinking big or already scaling up?

by Dennis Schmiege et al., 02. May, 2020

Ensuring safe drinking-water is the target of the Water Safety Plan (WSP) approach, which has been successfully applied to a large number of water supply systems around the world. Effective country-wide scaling up of WSP implementation requires an enabling environment at the policy level.

By utilizing a multi-step mixed methods approach, this study summarizes international experience with WSP implementation and scaling-up efforts following the 8 steps of the WSP road map published by WHO and IWA for an enabling environment, shows what steps Germany has in place, and compares this with published international experience to inspire further policy action.

Contrasting the international experience to the German situation revealed several overlaps but also profound differences, which, in turn, offer opportunities for mutual learning. Most experience in Germany and internationally is documented for the earlier steps of the WSP road map. Information particularly on developing a national strategy, securing financial instruments, activities to support continual implementation of WSPs and on review of the overall WSP experiences and sharing lessons learned appears to be scarce, while the importance of training, collaboration and alliances, and the value of a regulatory push are often stressed. In Germany, stakeholder engagement, guidance documents and workshop materials have been of vital importance. Information that could particularly inform further action in Germany mostly relate to considering a national WSP strategy, and how to shape an approach for external quality assurance of WSPs.

Version 1
21. April 2016.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by WHO, 11. April, 2013

WSP quality assurance tool

by WHO, 11. April, 2013

Tool developed to support the development and implementation of WSPs, systematically highlighting the areas where progress is being made and opportunities for improvement.

Version 1
23. December 2020.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by David Sheehan, 23. December, 2020

Operational policy: Preparation and implementation of water safety plans

by David Sheehan, 23. December, 2020

This purpose of this Operational Policy is to provide an overview of the minimum requirements for the preparation and implementation of Water Safety Plans (WSPs) across a water supply system.

This Operational Policy is not intended to replace any applicable regulatory requirements with respect to WSPs, but, rather, to provide some guidance on important aspects of the WSP implementation

This Operational Policy is divided into three distinct sections: Catchment, Treatment and Distribution, and provides information on the minimum requirements for each part of the catchment-to-consumer WSP framework.

Version 1
10. February 2017.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by MOWIE Ethiopia, 18. October, 2016

Climate Change and Health – Ethiopia – Lesson learned documentation WASH sector

by MOWIE Ethiopia, 18. October, 2016

The purpose of this document is to share Ethiopia’s experience in the implementation of the "Building adaptation to climate change in health in least developed countries through WASH project" especially the WASH sector with development partners, government bodies and project implementing member countries. It includes valuable lessons learned from development and implementation of climate-resilient water safety plans and associated policy.

 

 

Version 1
1. November 2011.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by World Health Organization et al., 01. November, 2011

Nepal: Water safety plan

by World Health Organization et al., 01. November, 2011

Under AusAid funding, WHO supported Water safety plan implementation in Nepal. This case study reports on key WSP facts, and describes the status of water supply.

Version 1
20. March 2017.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by World Health Organization Regional Office for Europe et al.,

Taking policy action to improve small-scale water supply and sanitation systems. Tools and good practices from the pan-European Region

by World Health Organization Regional Office for Europe et al.,

Presents policy-makers with a range of regulatory, planning, financial and educational instruments to support effective policy and promote good practice (including water safety planning) to improve small-scale water supply and sanitation systems.

This publication aims to inspire practitioners and policy-makers who develop water supply and sanitation policies and programmes at the national or subnational levels to consider improvement actions that they can adapt for their own circumstances. It further assists policy-makers in formulating specific targets for small-scale systems and in planning concrete actions for their achievement. Other stakeholders – such as aid and funding agencies, local governments and nongovernmental organizations – may also find the information relevant for their programmes and projects.

Version 2
1. October 2013.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by WHO, 01. October, 2013

Maynilad Water: Water Safety Plans

by WHO, 01. October, 2013

Describes the formulation of a Water Safety Plan by Maynilad Water Services, Inc. Philippines.

Version 1
9. November 2016.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Paul M Byleveld et al.,

Safe drinking water in regional NSW, Australia

by Paul M Byleveld et al.,

The New South Wales (NSW) Public Health Act 2010 requires water suppliers to implement a drinking water quality assurance program that addresses the ‘Framework for management of drinking water quality’ in the Australian drinking water guidelines. NSW Health has recognised the importance of a staged implementation of this requirement and the need to support regional water utilities. To date, NSW Health has assisted 74 regional utilities to develop and implement their management systems. The Public Health Act 2010 has increased awareness of drinking water risk management, and offers a systematic process to identify and control risks. This has benefited large utilities, smaller suppliers, and remote and Aboriginal communities. Work is continuing to ensure implementation of the process by private suppliers and water carters.

Version 1
24. August 2016.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by WHO, 2014

План обеспечения безопасности воды: практическое руководство по повышению безопасности питьевой воды в небольших местных общинах

by WHO, 2014

Снабжение приемлемой и безопасной питьевой водой в достаточном количестве является одной из основных необходимых предпосылок хорошего здоровья, экономического развития и устойчивой жизнедеятельности семей в сельских сообществах. Подход с использованием плана безопасности воды (ПБВ) является наиболее эффективным путем обеспечения питьевой водой в условиях маломасштабных систем водоснабжения.

В данных рекомендациях приводятся поэтапное описание подхода ПБВ и целый ряд готовых к использованию схем в помощь тем, кто занимается вопросами сельского водоснабжения на местном уровне, в разработке и осуществлении своих собственных ПБВ.

Рекомендации прежде всего адресованы членам сельских сообществ, отвечающих за организацию работы и управление системами водоснабжения, а также сотрудникам местных органов здравоохранения и водоснабжения, ответственных за обеспечение качества питьевой воды, и неправительственным организациям, оказывающим поддержку в области обеспечения безопасности питьевой воды в сельской местности.

Version 001
18. October 2017.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Mahmoud Abd Al Rahman Saad Mehany et al., 01. May, 2017

Water Safety Plan for Edfina Drinking Water Supply System, Behira Governorate – Egypt

by Mahmoud Abd Al Rahman Saad Mehany et al., 01. May, 2017

Edfina Drinking Water Treatment Plant was installed at Behira governorate, Egypt in 1998 and, due to increasing of water demand, the water authority intends to increase its capacity by installing a new conventional water treatment plant. However, water resources are suffering from many illegal activities in the catchment which deteriorate the raw water quality. The water higher community took the decision to develop a  WSP for Edfina supply system with the Holding Company in coordination with other water stakeholders (including the Irrigation ministry, Environmental ministry, Health Minisry, NGOs....). This document is the first version of the WSP and is shared as an example of a WSP approach adopted in Egypt.

Version 1
18. October 2017.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by WHO EURO, 18. October, 2017

Plan de gestion de la sécurité sanitaire de l’eau : un guide pratique pour l’amélioration de la sécurité sanitaire de l’eau potable dans les petites communautés

by WHO EURO, 18. October, 2017

Disposer d’eau potable de qualité acceptable et en suffisance est une condition préalable et essentielle à la bonne santé, au développement économique et à la durabilité des moyens de subsistance des familles des collectivités rurales. La mise en place d’un plan de gestion de la sécurité sanitaire de l’eau constitue l’approche la plus efficace en vue d’assurer l’alimentation en eau potable dans les systèmes d’approvisionnement en eau à petite échelle.

Le guide pratique explique cette approche étape par étape, et présente un ensemble de modèles prêts à l’emploi afin que les personnes ou entités chargées de l’approvisionnement en eau dans les zones rurales puissent élaborer et mettre en œuvre leur propre plan de gestion de la sécurité sanitaire de l’eau.

Le guide pratique s’adresse en particulier aux membres de la communauté rurale responsables de l’exploitation et de la gestion de l’approvisionnement en eau, ainsi qu’au personnel des services locaux de santé et d’approvisionnement en eau chargé de la préservation de la qualité de l’eau potable, et aux organisations non gouvernementales qui veillent à la sécurité sanitaire de l’eau potable dans les collectivités rurales.

Version 1
11. October 2023.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Rodriguez-Alvarez et al., 11. October, 2023

Long-Term Assessment of a Water Safety Plan (WSP) in Salta, Argentina

by Rodriguez-Alvarez et al., 11. October, 2023

The use of water safety plans (WSPs) has been recommended by the World Health Organization (WHO) since 2004 as a highly effective means of improving water safety management. Experience with the implementation of WSPs is increasing worldwide, but there is no unified or standardized methodology for how the verification of a WSP should be conducted. In this article, we present a thorough evaluation of a specific WSP five years after its initial implementation. We reviewed the risk assessment methodology used by a water utility in Salta, Argentina, and assessed the implementation of control measures. To objectively evaluate the effectiveness of the WSP, we evaluated water quality parameters and customer complaints using a time-series analysis. We show that although some control measures were implemented, and a reduction in risk values was observed, it was not possible to improve long-standing problems in the water supply of the city of Salta, such as the number of consumer complaints or high turbidity levels in the water during the rainy season. We discuss the role of rigorous scientific assessments and the importance of legislation and regulatory bodies in implementing the WSP.

Version 1
12. February 2020.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by H.H.J.L. van den Berg et al., 03. July, 2019

How current risk assessment and risk management methods for drinking water in The Netherlands cover the WHO water safety plan approach

by H.H.J.L. van den Berg et al., 03. July, 2019

In the Netherlands, safe and sufficient drinking water is provided to the general population by ten drinking water companies. To guarantee safe drinking water the World Health Organization (WHO) developed a Water Safety Plan (WSP), a Risk Assessment and a Risk Management (RA/RM) framework. The objective of the study was to
identify legally required RA approaches, to document application of RA/RM activities at Dutch drinking water companies and to determine to what extent these RA/RM activities as a whole cover all the elements of the WHO WSP approach. This study could be of interest to both managers of large water utilities and decision makers.

The assessment was performed by means of a policy review and interviews with two to four staff members involved in RA/RM from all ten Dutch drinking water companies combined with a joint workshop. The drinking water companies are well aware of the potential hazards and risks that can influence the drinking water quality. To guarantee the supply of safe and sufficient drinking water, the Dutch drinking water sector uses six different legally required RA/RM approaches. This study shows that by using the six legally required RA/RM approaches, all WSP steps are covered. WSP entails a generic risk assessment for identifying all hazards and hazardous events from source to tap, whereas the six legally required RA/RM each focus on specific risks at an advanced level.
Each risk assessment provides information on specific hazards and hazardous events covering a part of the water supply chain. These legal requirements are complemented with additional RA/RM activities at sector and water company level such as codes of practices and standard operating procedures. The outcomes of all RA/RM approaches combined provide information from source to tap. When using multiple RA/RM approaches, it is crucial to share and combine information derived from the different activities.

Version 1
18. October 2017.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by WHO, 18. October, 2017

Climate-resilient water safety plans: Managing health risks associated with climate variability and change

by WHO, 18. October, 2017

This document provides guidance on how climate considerations can be integrated into water safety planning to provide greater resilience to the current and predicted impacts of climate change and variability on water supplies. The guidance is supported by numerous practical examples of climate resilient water safety planning from both low and high income settings.

Version 1
26. July 2018.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Federal Ministry of Water et al., 01. July, 2015

Climate Resilient Water Safety Strategic Framework Ethiopia

by Federal Ministry of Water et al., 01. July, 2015

This framework provides the strategic blueprint to develop a climate orientated risk assessment and management approach for drinking-water supplies, from catchment to consumer.

Considered global best practice, WHO advocates for the WSP approach as the most consistent means to ensure the safe and reliable supply of safe drinking-water. Adapted to the Ethiopian context, this document outlines a roadmap for the national scale-up of climate resilient WSPs.

Version 1
9. February 2023.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by WHO et al., 23. January, 2023

WSP Manual: Module 3 supplementary tool – possible threats to the supply of safe drinking-water

by WHO et al., 23. January, 2023

This tool is intended to support the practical application of the guidance presented in the Water safety plan manual: step-by-step risk management for drinking-water suppliers, second edition (WHO & IWA, 2023). Refer to Module 3 in the manual for detailed guidance.

WSP teams can use this tool to help identify possible threats to water safety, which will inform the identification of hazards and hazardous events (Module 3).

Version 1
4. December 2017.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by World Health Organization (Regional Office for South-East Asia), 03. July, 2017

Operational Monitoring Plan Development: A guide to strengthening operational monitoring practices in small- to medium-sized water supplies

by World Health Organization (Regional Office for South-East Asia), 03. July, 2017

Practical guidance and training materials for small- and medium-sized water suppliers, and for those providing training and support to these suppliers, on strengthening operational monitoring practices – a core element of water safety planning. Training materials include a facilitator’s guide and PowerPoint slides.

Version 2
1. November 2009.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by USEPA et al., 01. November, 2009

Water Quality application of composite correction in India

by USEPA et al., 01. November, 2009

This case study describes the study of the Composite Correction Programme (CCP) in three different cities in India to prepare for the implementation of Water Safety Plans. CCP is a water treatment plant optimization program that improves water treatment operation with limited capital investment by optimizing particle removal from water treatment plants.