Version 1
28. February 2023.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
28. February, 2023

Water Safety Plan Manual. 2nd Edition

28. February, 2023

This Water safety plan manual provides practical guidance to support development and implementation of water safety planning in accordance with the principles presented in the WHO Guidelines for drinking-water quality.

The manual is targeted at water suppliers and organizations supporting water safety planning programmes, including government agencies responsible for public health, or regulation and surveillance of drinking-water quality, nongovernmental or intergovernmental organizations. The guidance provides a broad range of examples and case studies from lower- to higher-income settings, highlighting practical solutions to real-world challenges from around the globe to help readers apply the guidance in diverse contexts.

This second edition streamlines guidance on the integration of climate resilience and equity into the water safety planning approach, to help support access to safely managed drinking-water services for all users, despite growing uncertainties from a changing climate.

Version 1
9. February 2023.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by WHO et al., 23. January, 2023

WSP manual supplementary tool: Module 10 – checklists for conducting WSP reviews

by WHO et al., 23. January, 2023

This tool is intended to support the practical application of the guidance presented in the Water safety plan manual: step-by-step risk management for drinking-water suppliers, second edition (WHO & IWA, 2023). Refer to Module 10 in the manual for detailed guidance.

This tool provides key questions and considerations for conducting successful water safety plan (WSP) reviews, including post-event reviews (e.g. following a significant incident, near miss or emergency). It can also support reviews with a particular focus on strengthening equity and climate considerations as part of continuous WSP improvement.

Version 1
9. February 2023.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by WHO et al., 23. January, 2023

WSP Manual supplementary tool: Module 8 – general checklist for emergency preparedness

by WHO et al., 23. January, 2023

This tool is intended to support the practical application of the guidance presented in the Water safety plan manual: step-by-step risk management for drinking-water suppliers, second edition (WHO & IWA, 2023).  Refer to Module 8 in the manual for detailed guidance.

To support preparedness for emergency responses and unforeseen events in accordance with Module 8, use this checklist to consider what needs to be in place in the local context.

Version 1
9. February 2023.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by WHO et al., 23. January, 2023

WSP Manual supplementary tool: Module 4 – examples of risk assessment matrices

by WHO et al., 23. January, 2023

This tool is intended to support the practical application of the guidance presented in the Water safety plan manual: step-by-step risk management for drinking-water suppliers, second edition (WHO & IWA, 2023). Refer to Module 4 in the manual for detailed guidance.

This tool provides examples of risk matrices, to illustrate the wide range of options that could be adopted for risk assessment as part of water safety planning.

Version 1
9. February 2023.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by WHO et al., 23. January, 2023

WSP Manual: Module 3 supplementary tool – possible threats to the supply of safe drinking-water

by WHO et al., 23. January, 2023

This tool is intended to support the practical application of the guidance presented in the Water safety plan manual: step-by-step risk management for drinking-water suppliers, second edition (WHO & IWA, 2023). Refer to Module 3 in the manual for detailed guidance.

WSP teams can use this tool to help identify possible threats to water safety, which will inform the identification of hazards and hazardous events (Module 3).

Version 1
23. January 2023.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by WHO et al., 23. January, 2023

WSP Manual: Module 2 supplementary tool – system description checklist

by WHO et al., 23. January, 2023

This tool is intended to support the practical application of the guidance presented in the Water safety plan manual: step-by-step risk management for drinking-water suppliers, second edition (WHO & IWA, 2023). Refer to Module 2 in the manual for detailed guidance.

The checklist below supports water safety plan (WSP) teams with describing the water supply (Module 2). It includes key information to consider and summarize when describing each stage of the water supply, including:

  • general system information (including equity- and climate-related aspects);
  • source (including surface water and groundwater aspects, and the catchment);
  • treatment;
  • distribution and storage;
  • user practices (including buildings);
  • water safety aspects (e.g. national drinking-water quality regulations and standards, historical water quality data, customer notifications and complaints); and
  • known or potential problems in the system.
Version 1
13. December 2022.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by WHO Regional Office for Europe, 14. October, 2022

A field guide to improving small drinking-water supplies: water safety planning for rural communities

by WHO Regional Office for Europe, 14. October, 2022

The WHO Guidelines for drinking-water quality recommend the water safety plan (‎WSP)‎ approach as the most effective way of ensuring continuous provision of safe drinking-water.

The challenges related to drinking-water supply in rural areas and small towns are of notable concern globally, but the WSP approach has been proven to work effectively in small-scale water supplies. It clearly emphasizes the importance of preventing waterborne disease, and supports communities in dealing with the everyday challenges of maintaining a reliable and safe water supply.

This second, updated edition of WHO’s Water safety plan: a field guide to improving drinking-water safety in small communities provides a step-by-step introduction to the WSP approach and includes a range of ready-to-use templates to assist those involved in rural water supply with developing and implementing their own WSPs.

Version 1
2. November 2022.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by WHO SEARO, 02. November, 2022

Establishing a National WSP Regulatory Audit Scheme – Guidance Package

by WHO SEARO, 02. November, 2022

This package of materials is intended to support countries in developing (or strengthening) national schemes for regulatory auditing of water safety plans. Topics addressed include audit mandates and drivers, standardized audit criteria, auditor qualification and selection processes, financing and other mechanisms for audit functionality and sustainability. The materials are intended to facilitate a stakeholder workshop to discuss the ‘key factors and principles’ for establishing a successful and sustainable audit programme, the output of which is a detailed action plan for the development (or advancement) of a context-appropriate national audit scheme.

Version 1
20. October 2022.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments

Water Safety Conference 2022 – Conference records are now available

The Water Safety Conference 2022 recording are available to the public under the “Conference record” page on the conference webpage. https://watersafety2022.org/conference-record/

Version 1
19. October 2022.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
14. January, 2022

OPERATIONAL POLICY AND GUIDING DOCUMENT. GWCL

14. January, 2022
Version 1
18. June 2022.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments

Test Resource Brenda

Version 1
15. September 2021.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by By Kizito Masinde; Michael Rouse; Martha Jepkirui; Katharine Cross, 01. April, 2021

Guidance on Preparing Water Service Delivery Plans: A manual for small to medium-sized water utilities in Africa and similar settings

by By Kizito Masinde; Michael Rouse; Martha Jepkirui; Katharine Cross, 01. April, 2021

This publication is a guideline or how-to manual on preparing water service delivery plans with a focus on small to medium sized organised water utilities having with approximately 5,000 to over 100,000 connections mainly in areas with limited capacity and resources. The manual is simplified enough to ensure that these utilities are able to move from a situation where they are struggling to deliver water services to where basic service levels in terms of water quality, quantity, accessibility, reliability, affordability, and acceptability are met. Meeting these basic service levels provides a strong foundation for the utility to progressively move up the ladder of delivering improved services.

Access the publication on IWAP.

Version 1
12. August 2021.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by State Ministry of Rural and Divisional Drinking Water Supply Projects Development,

Rural Water Safety Plan – Instructions and Training Materials

by State Ministry of Rural and Divisional Drinking Water Supply Projects Development,

Tailored guidance package to support rural water safety planning in Sri Lanka. Includes stepwise instructions for trainers to conduct a rural WSP training incorporating a field visit.

Version 1
10. August 2021.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Karen Setty et al., 26. May, 2021

Water Safety Plans

by Karen Setty et al., 26. May, 2021

Water safety plans (WSPs) represent a holistic risk assessment and management approach covering all steps in the water supply process from the catchment to the consumer. Since 2004, the World Health Organization (WHO) has formally recommended WSPs as a public health intervention to consistently ensure the safety of drinking water. These risk management programs apply to all water supplies in all countries, including small community supplies and large urban systems in both developed and developing settings. As of 2017, more than 90 countries had adopted various permutations of WSPs at different scales, ranging from limited-scale voluntary pilot programs to nationwide implementation mandated by legislative requirements. Tools to support WSP implementation include primary and supplemental manuals in multiple languages, training resources, assessment tools, and some country-specific guidelines and case studies.

Systems employing the WSP approach seek to incrementally improve water quality and security by reducing risks and increasing resilience over time. To maintain WSP effectiveness, water supply managers periodically update WSPs to integrate knowledge about prior, existing, and potential future risks. Effectively implemented WSPs may translate to positive health and other impacts. Impact evaluation has centered on a logic model developed by the Centers for Disease Control and Prevention (CDC) as well as WHO-refined indicators that compare water system performance to pre-WSP baseline conditions. Potential benefits of WSPs include improved cost efficiency, water quality, water conservation, regulatory compliance, operational performance, and disease reduction. Available research shows outcomes vary depending on site-specific context, and challenges remain in using WSPs to achieve lasting improvements in water safety. Future directions for WSP development include strengthening and sustaining capacity-building to achieve consistent application and quality, refining evaluation indicators to better reveal linked outcomes (including economic impacts), and incorporating social equity and climate change readiness.

Version 1
10. August 2021.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Bettina Rickert et al., 07. June, 2021

Compilation of potential hazardous events and their causes

by Bettina Rickert et al., 07. June, 2021

This interactive tool supports the implementation of the WSP step of hazard assessment by providing an overview of hazardous events, including those relating to climate change. The compilation was piloted and adapted based on experiences gathered, and aims to support practitioners, particularly water suppliers, health agencies and consultants, in implementing WSPs for climate resiliance. It was piloted in large (urban), professionally managed water supplies in limited resource settings, however, can also be applied and adapted for water supplies in other settings. This is not intended to be an exhaustive list, and may need to be adapted for application in the local context. It is intended to complement existing comprehensive guidance for implementation by providing a tool for practical application.

Version 1
4. May 2021.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by IWA,

Briefing Note-Water Safety Planning to improve public health, water security and climate resilience

by IWA,

The successful development and implementation of WSPs have many benefits common to all drinking water systems, with some that are unique to each system. The major benefit of implementation contributes to improving drinking water safety and quality. To achieve this WSPs provide a framework for risk reduction prevention of hazards and a better response to emergencies, which not only improves public health but can ensure better watershed management and resilience to climate impacts.

 

Version 1
8. April 2021.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by UNICEF Pacific, 08. March, 2018

Pacific WASH Resilience Guidelines & Tools

by UNICEF Pacific, 08. March, 2018

These guidelines and training materials have been produced by UNICEF Pacific and encompass a number of tools to expand and strengthen the work of governments and other partners to improve water, sanitation and hygiene services, whilst building resilience for communities in the Pacific. The guidance collates current approaches and previous guidance on WASH and resilience in one location, covering theory, guidance and practical tools. By addressing disaster risk reduction and climate change adaptation in a comprehensive approach across the disaster and climate risk continuum, it serves as a contribution to the Framework for Resilient Development in the Pacific.

 

Version 1
17. March 2021.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by World Health Organization, 17. March, 2021

Water safety planning training videos

by World Health Organization, 17. March, 2021

Training videos on water safety planning are now available. The videos cover an introduction to water safety plan principles and steps, and water safety plan auditing. These videos are recordings from a bilateral training event organized by the WHO South-East Asia and Western Pacific Regional Offices, with support from WHO Headquarters. The content has been designed such that the global WSP community can benefit from viewing. For more information and to view the videos, visit the Water safety planning training videos page.

Version 1
12. March 2021.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by IWA, 10. March, 2021

Factsheet: Engaging vulnerable groups in the implementation of CR WSP

by IWA, 10. March, 2021

Water is a fundamental need in every person’s life and ensuring access to safe water for all without discrimination is a human right, recognized by the United Nations (UN) in 2010. The global commitment to safe water for all is further demonstrated through the Sustainable Development Goal (SDG) 6 targets to achieve universal and equitable access to safe and affordable drinking-water for all. However, many people cannot yet claim their fundamental right to water, and inequalities to safe water access is felt disproportionately by those who are disadvantaged socially, economically, demographically, or geographically.

Read more on how to engage vulnerable groups in CR WSP in this factsheet.

Version 1
4. March 2021.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by World Health Organisation, 2021

Plans de gestion de la sécurité sanitaire de l’eau résilients au climat : Gestion des risques de santé liés à la variabilité et au changement climatiques.

by World Health Organisation, 2021

Ce guide présente l'état actuel des connaissances sur les effets des changements climatiques sur le cycle de l'eau ainsi que les impacts sanitaires associés. Il est destiné à aider les fournisseurs d'eau qui se sont engagés à utiliser ou qui utilisent déjà l'approche du Plan de Gestion de la Sécurité Sanitaire de l'Eau (PGSSE), à mieux comprendre les questions liées aux changements climatiques et à soutenir l'identifi cation et la gestion des risques liés aux changements climatiques dans le cadre du processus du PGSSE.

Le document aidera les professionnels du secteur, en particulier les fournisseurs d'eau et les équipes du PGSSE à identifi er et à intégrer les questions plus larges du changement climatique, de la réduction des risques de catastrophe (RRC) et de la gestion intégrée des ressources en eau (GIRE) en tant qu'approches contributives importantes au processus du PGSSE.

https://iwaponline.com/ebooks/book/812/Plans-de-gestion-de-la-securite-sanitaire-de-l-eau

 

 

Version 1
23. December 2020.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by David Sheehan, 23. December, 2020

Operational policy: Preparation and implementation of water safety plans

by David Sheehan, 23. December, 2020

This purpose of this Operational Policy is to provide an overview of the minimum requirements for the preparation and implementation of Water Safety Plans (WSPs) across a water supply system.

This Operational Policy is not intended to replace any applicable regulatory requirements with respect to WSPs, but, rather, to provide some guidance on important aspects of the WSP implementation

This Operational Policy is divided into three distinct sections: Catchment, Treatment and Distribution, and provides information on the minimum requirements for each part of the catchment-to-consumer WSP framework.

Version 1
22. December 2020.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Asian Development Bank, 21. December, 2020

Guidelines for Drinking Water Safety Planning for West Bengal

by Asian Development Bank, 21. December, 2020

This publication provides practical guidance and best practices on the stages of developing safe rural drinking water delivery service schemes in West Bengal and other areas in India.

Water safety planning is considered an international best practice for assessing and managing public health risks from drinking water supply systems. The Asian Development Bank, in close collaboration with the World health Organization, assisted in developing water safety planning guidelines for West Bengal under a project aiming to improve rural drinking water delivery service schemes in the state. The publication outlines phases of the water safety plan, which can also be applied to developing bulk water supply systems.

Version 1
4. December 2020.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments

Water Safety Planning (WSP), an approach which aims at ensuring safe drinking-water thorough a comprehensive risk system assessment and management process since its adoption by the International Water Association (IWA) and World Health Organization (WHO) seeks to support achieving the Sustainable Development Goal (SDG) target 6.1 to provide safe drinking-water for all.
Since  its adoption,  national governments have included them in national legislation to promote their implementation because of its immense benefits.

In scaling up effective up of WSP implementation across these different countries, this worldwide accepted approach needs to be supported by tools, resources, regulations and policies, guidelines to create the enabling environment and support stakeholder participation at the national level.

IWA with support from OPEC Fund for International Development (OFID), under the Climate Resilient Water Safety Planning Project has produced this document with a summary of existing national policy and guidelines to support WSP implementation.

Version 1
16. November 2020.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments

Climate-Smart Utility Case Stories

Climate resilience needs to be built and coordinated at the basin, city and utility level to ensure adaptive measures for water systems are effective and integrate other urban services.  IWA and partners undertook a series of webinar on climate smart utilities to showcase what utilities are doing to address climate change both from a mitigation and adaptation approach.

Read more on IWAs work on Climate Smart Water Utilities

https://iwa-network.org/projects/climate-smart-water-utilities/

 

Version 1
20. October 2020.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Rory Moses McKeown,

Lessons learned from practical CR WSP implementation and auditing in Africa and Asia.

by Rory Moses McKeown,

Water, sanitation and hygiene (WASH) have a significant impact on health and, of particular concern as described in the recent Intergovernmental Panel on Climate Change Special Report on Extreme Events, are the risks of more frequent and intense extreme weather events such as floods, cyclones and droughts, alongside increasing temperatures. Such extremes pose particular challenges to the capacity of WASH programmes to protect health, and there is accumulating evidence that climate change is worsening these risks.

A national programme of water safety plan (WSP) auditing was undertaken in 2018/19 with a particular focus on climate resilience, to learn lessons from the pilot WSPs and adapt the programme in advance of future scale-up.

Version 1
18. June 2020.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Dennis Schmiege et al., 02. May, 2020

Comparing the German enabling environment for nationwide Water Safety Plan implementation with international experiences: Are we still thinking big or already scaling up?

by Dennis Schmiege et al., 02. May, 2020

Ensuring safe drinking-water is the target of the Water Safety Plan (WSP) approach, which has been successfully applied to a large number of water supply systems around the world. Effective country-wide scaling up of WSP implementation requires an enabling environment at the policy level.

By utilizing a multi-step mixed methods approach, this study summarizes international experience with WSP implementation and scaling-up efforts following the 8 steps of the WSP road map published by WHO and IWA for an enabling environment, shows what steps Germany has in place, and compares this with published international experience to inspire further policy action.

Contrasting the international experience to the German situation revealed several overlaps but also profound differences, which, in turn, offer opportunities for mutual learning. Most experience in Germany and internationally is documented for the earlier steps of the WSP road map. Information particularly on developing a national strategy, securing financial instruments, activities to support continual implementation of WSPs and on review of the overall WSP experiences and sharing lessons learned appears to be scarce, while the importance of training, collaboration and alliances, and the value of a regulatory push are often stressed. In Germany, stakeholder engagement, guidance documents and workshop materials have been of vital importance. Information that could particularly inform further action in Germany mostly relate to considering a national WSP strategy, and how to shape an approach for external quality assurance of WSPs.

Version 1
18. June 2020.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by World Health Organization, 18. June, 2020

Water safety plan audit training package

by World Health Organization, 18. June, 2020

Water safety plans (WPS) have been implemented in every region of the world, and many implementing countries have included WSPs in drinking-water policies or regulations. Enforcement of WSP requirements, as well as general WSP success and sustainability, requires ongoing WSP auditing, i.e. independent and systematic checks of WSP completeness, implementation in practice and effectiveness.

This training package presents guidance on preparing for and conducting a WSP audit, covering such topics as the aim and role of auditing, audit criteria, audit timing and frequency and audit reporting. It provides practical tools to support auditors conduct successful audits for continuous WSP improvement.

 

Version 1
27. May 2020.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Asoka Jayaratne,, 27. May, 2020

A Journey Towards Safe Drinking Water for All

by Asoka Jayaratne,, 27. May, 2020

This water safety plan country report for Sri Lanka shares the key learnings from the country's WSP journey and achievements. The lessons learned can support the broader WSP global community for successful and practical WSP implementation.

Version 1
5. March 2020.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by University of Surrey, 05. March, 2020

Risk assessment of small water supplies in lower-middle income settings

by University of Surrey, 05. March, 2020

Set in Uganda, this short video documents how sanitary inspections can be applied as a basic risk management tool for small water supplies in resource limited settings. For more information, visit: https://www.surrey.ac.uk/department-civil-environmental-engineering/research/water-environment-and-health-engineering-group

Version 1
5. March 2020.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by University of Surrey, 05. March, 2020

Risk assessment of small water supplies

by University of Surrey, 05. March, 2020

Set in Iceland, this short video documents how sanitary inspections can be applied as a basic risk management tool for small water supplies. For more information, visit: https://www.surrey.ac.uk/department-civil-environmental-engineering/research/water-environment-and-health-engineering-group

Version 1
12. February 2020.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by H.H.J.L. van den Berg et al., 03. July, 2019

How current risk assessment and risk management methods for drinking water in The Netherlands cover the WHO water safety plan approach

by H.H.J.L. van den Berg et al., 03. July, 2019

In the Netherlands, safe and sufficient drinking water is provided to the general population by ten drinking water companies. To guarantee safe drinking water the World Health Organization (WHO) developed a Water Safety Plan (WSP), a Risk Assessment and a Risk Management (RA/RM) framework. The objective of the study was to
identify legally required RA approaches, to document application of RA/RM activities at Dutch drinking water companies and to determine to what extent these RA/RM activities as a whole cover all the elements of the WHO WSP approach. This study could be of interest to both managers of large water utilities and decision makers.

The assessment was performed by means of a policy review and interviews with two to four staff members involved in RA/RM from all ten Dutch drinking water companies combined with a joint workshop. The drinking water companies are well aware of the potential hazards and risks that can influence the drinking water quality. To guarantee the supply of safe and sufficient drinking water, the Dutch drinking water sector uses six different legally required RA/RM approaches. This study shows that by using the six legally required RA/RM approaches, all WSP steps are covered. WSP entails a generic risk assessment for identifying all hazards and hazardous events from source to tap, whereas the six legally required RA/RM each focus on specific risks at an advanced level.
Each risk assessment provides information on specific hazards and hazardous events covering a part of the water supply chain. These legal requirements are complemented with additional RA/RM activities at sector and water company level such as codes of practices and standard operating procedures. The outcomes of all RA/RM approaches combined provide information from source to tap. When using multiple RA/RM approaches, it is crucial to share and combine information derived from the different activities.

Version 1
12. February 2020.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Harold van den Berg ; Bettina Rickert ; Seada Ibrahim ; Kasa Bekure ; Hailu Gichile ; Seble Girma ; Altaseb Azezew ; Tadesse Zegeye Belayneh ; Solomon Tadesse ; Zeleke Teferi Firehiwot Abera ; Samson Girma ; Tesfaye Legesse ; Daniel Truneh ; Gretta Lynch ; Ingmar Janse ; Ana Maria de Roda Husman, 31. October, 2019

Linking water quality monitoring and climate-resilient water safety planning in two urban drinking water utilities in Ethiopia

by Harold van den Berg ; Bettina Rickert ; Seada Ibrahim ; Kasa Bekure ; Hailu Gichile ; Seble Girma ; Altaseb Azezew ; Tadesse Zegeye Belayneh ; Solomon Tadesse ; Zeleke Teferi Firehiwot Abera ; Samson Girma ; Tesfaye Legesse ; Daniel Truneh ; Gretta Lynch ; Ingmar Janse ; Ana Maria de Roda Husman, 31. October, 2019

Unsafe drinking water is a recognized health threat in Ethiopia, and climate change, rapid population growth, urbanization and agricultural practices put intense pressure on availability and quality of water. Climate change-related health problems due to floods and waterborne diseases are increasing. With increasing insight into impacts of climate change and urbanization on water availability and quality and of required adaptations, a shift towards climate-resilient water safety planning was introduced into an Ethiopian strategy and guidance document to guarantee safe drinking water. Climate-resilient water safety planning was implemented in the urban water supplies of Addis Ababa and Adama, providing drinking water to 5 million and 500,000 people, respectively. Based on the risks identified with climate-resilient water safety planning, water quality monitoring can be optimized by prioritizing parameters and events which pose a higher risk for contaminating the drinking water. Water quality monitoring was improved at both drinking water utilities and at the Public Health Institute to provide relevant data used as input for climate-resilient water safety planning. By continuously linking water quality monitoring and climate-resilient water safety planning, utilization of information was optimized, and both approaches benefit from linking these activities.

Version 1
7. January 2020.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Isabelle Schmidt et al., 30. October, 2019

Implementation and evaluation of the water safety plan approach for buildings

by Isabelle Schmidt et al., 30. October, 2019

The World Health Organization (WHO) promotes water safety plans (WSPs) – a risk-based management approach – for premise plumbing systems in buildings to prevent deterioration of drinking-water quality. Experience with the implementation of WSPs in buildings were gathered within a pilot project in Germany. The project included an evaluation of the feasibility and advantages of WSPs by all stakeholders who share responsibility in drinking-water safety. While the feasibility of the concept was demonstrated for all buildings, benefits reported by building operators varied. The more technical standards were complied with before implementing WSP, the less pronounced were the resulting improvements. In most cases, WSPs yielded an increased system knowledge and awareness for drinking-water quality issues. WSPs also led to improved operation of the premise plumbing system and provided benefits for surveillance authorities. A survey among the European Network of Drinking-Water Regulators on the existing legal framework regarding drinking-water safety in buildings exhibited that countries are aware of the need to manage risks in buildings' installations, but experience with WSP is rare. Based on the successful implementation and the positive effects of WSPs on drinking-water quality, we recommend the establishment of legal frameworks that require WSPs for priority buildings whilst accounting for differing conditions in buildings and countries.

Version 1
1. July 2019.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Water Supplies Department et al., 01. July, 2019

WSP template for hospitals in Hong Kong

by Water Supplies Department et al., 01. July, 2019

This template is prepared based on recommendations of the World Health Organization (WHO) with an aim to assisting the management staff of a hospital to develop and implement Water Safety Plan (WSP) to enhance water safety. It covers the essential elements of WSPs and common requirements applicable to the plumbing layout of hospitals. In additional to the English version, this resource is also available in traditional Chinese and simplified Chinese.

 

 

Version 1
10. June 2019.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Bettina Rickert et al., 13. May, 2019

Including aspects of climate change into water safety planning: Literature review of global experience and case studies from Ethiopian urban supplies

by Bettina Rickert et al., 13. May, 2019

In recent years, the water safety plan approach has been extended towards climate-resilient water safety planning. This happened in response to increasing insight into impacts of climate on drinking-water and required adaptation to anticipated climate change. Literature was reviewed for published guidance and case examples, documenting how to consider climate in water safety planning to support future uptake. Climate-resilient water safety plans were piloted within a project in the water supplies of Addis Ababa and Adama, Ethiopia.

Case examples have been published in four of six WHO regions with a focus on urban supplies. Integration of climate aspects focused mostly on the steps of establishing the team, system description, hazard analysis and risk assessment, improvement planning and development of management procedures. While the traditional framework focuses on drinking-water quality, considering climate change augments aspects of water quantity. Therefore, other factors affecting water quantity such as population development and demand of other sectors need to be considered as well. Local climate information and tools should be employed as a significant success factor for future uptake. Such information should be incorporated as it becomes available, and may – depending on the setting – be incrementally integrated into existing water safety plans or used to develop new ones.

Version 1
16. May 2019.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
01. May, 2019

Strategic Recommendations for Climate Smart Water Utilities: Using the Flood and Drought Portal in Planning

01. May, 2019

The effect of climate change on the hydrological cycle is becoming a growing phenomenon and resulting in impacts including flood and drought events, disappearance of glaciers, decrease in groundwater recharge, and water quality degradation (e.g. oxygen depletion in water reservoirs during extreme heat events) (WHO, 2017).

Such events are becoming increasingly common, more severe and less predictable with increasing climate variability and change. Stakeholders from catchment to tap have a role to play in strengthening climate resilience. Water utilities, in particular, need to have sustainable and resilient water resources management to ensure water supply continuity and to fulfill their responsibility to deliver safe and secure water to their customers.

This document focuses on strategic recommendations for water utilities on:

  1. Why and how water utilities can integrate climate change impacts into planning and management of water resources, specifically through WSPs; and
  2. How to use the Flood and Drought Portal (www.flooddroughtmonitor.com), to better include climate data and information into WSP, ensuring its climate resilience

Version 1
22. March 2019.
1 vote, average: 5.00 out of 51 vote, average: 5.00 out of 51 vote, average: 5.00 out of 51 vote, average: 5.00 out of 51 vote, average: 5.00 out of 5
0 comments
by Arnt Diener / WHO EURO, 22. March, 2019

Documentary on WSP implementation

by Arnt Diener / WHO EURO, 22. March, 2019

Beautiful short film on how to achieve safe drinking-water by Björn Weber, Oliver Meinborn and Grimme-price winner Ute Hilgeford. Launched by the World Health Organization on World Water Day 2019.

The film-makers accompany a community in the mountains of Tajikistan – where water safety plans have been introduced for the first time in Central Asia. It is a group of citizens who take matters into their own hands. An inspiring story of how a village invests their funeral fund on safer drinking-water.

Version 1
22. March 2019.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by WHO, 22. March, 2019

A guide to equitable water safety planning: Ensuring no one is left behind

by WHO, 22. March, 2019

The lack of access to safe drinking-water is felt disproportionately by those who are disadvantaged socially, economically, demographically or geographically, and explicit consideration of these groups is required to understand and address disparities.

This document describes how, with relatively modest efforts, the water safety plan (WSP) approach can bring tangible improvements in water quality and availability for all users. By providing step-by-step guidance for all WSP stakeholders, as well as good practice examples from a broad range of countries and contexts, this document serves as a practical tool to help achieve safe water for all.

The electronic version of the PowerPoint slides presented in Tool F of the document, available under “Downloads” above, is intended to facilitate the integration of equity considerations into standard WSP training events.

Version 0
21. February 2019.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Karen Setty et al., 20. February, 2019

Comparative evaluation of risk management frameworks for U.S. source waters

by Karen Setty et al., 20. February, 2019

The U.S. Safe Drinking Water Act required states to develop source water assessment programs identifying existing and potential contamination sources; however, comprehensive risk prioritization and management approaches for surface water supplies have seen limited application. This participatory study assessed which permutation(s) of risk management frameworks and tools might benefit U.S. utilities by combining a literature review with external utility interviews. Qualitative data provided a basis for categorical assignments of goodness of fit
with each of 24 framework evaluation criteria across five categories. Weighted integration using stakeholder input provided a relative ranking of applicability, later validated at a decision-making workshop. Hybridization of the American National Standards Institute/American Water Works Association (ANSI/AWWA G300) source water protection standard and World Health Organization Water Safety Plan guidance was recommended to develop a comprehensive risk management approach for U.S. source waters. Cost–benefit components of other guidance materials were recommended to incorporate financial considerations into risk ranking and mitigation decisions.

Version 1
21. February 2019.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by David Sutherland et al., 29. August, 2017

Observations and lessons learnt from more than a decade of water safety planning in South-East Asia

by David Sutherland et al., 29. August, 2017

In many countries of the World Health Organization (WHO) South-East Asia Region, drinking water is not used directly from the tap and faecal contamination of water sources is prevalent. As reflected in Sustainable Development Goal 6, access to safer drinking water is one of the most successful ways of preventing disease. The WHO Water Safety Framework promotes the use of water safety plans (WSPs), which are structured tools that help identify and mitigate potential risks throughout a water-supply system, from the water source to the point of use. WSPs not only help prevent outbreaks of acute and chronic waterborne diseases but also improve water-supply management and performance. During the past 12 years, through the direct and indirect work of a water quality partnership supported by the Australian Government, more than 5000 urban and rural WSPs have been implemented in the region. An impact assessment based on pre- and post-WSP surveys suggests that WSPs have improved system operations and management, infrastructure and performance; leveraged donor funds; increased stakeholder communication and collaboration; increased testing of water quality; and increased monitoring of consumer satisfaction. These achievements, and their sustainability, are being achieved through national legislation and regulatory frameworks for water supply, including quality standards for drinking water; national training tools and extensive training of sector professionals and creation of WSP experts; model WSPs; WSP auditing systems; and the institution of longterm training and support. More than a decade of water safety planning using the WSP approach has shown that supplying safe drinking water at the tap throughout the WHO South-East Asia Region is a realistic goal.